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Abstract

The first examples are described wherein addition of an ester enolate to an alkoxy-substituted
arene–chromium tricarbonyl complex, to afford a substituted cyclohexenone in high enantiomeric excess.
© 2000 Elsevier Science Ltd. All rights reserved.

The scope of nucleophile addition reactions to substituted (arene)Cr(CO)3 complexes to give
dearomatized cyclohexadienyl products is somewhat limited.1 This is a direct consequence of the
electron accepting ability of the Cr(CO)3 subunit which has two separate effects on the arene
ligand. The first is that it increases the Brønsted acidity of the arene protons (by 6–9 pKa units)
so that hard nucleophiles prefer to deprotonate the arene ligand. Secondly, the Cr(CO)3 subunit
only modestly activates the arene ligand towards nucleophilic attack, so that often there is an
unfavorable equilibrium between the starting complex (e.g. 1, Eq. (1)) and the anionic interme-
diate 4, such that only very reactive nucleophiles (pKa]23) undergo successful addition. The
Kündig group has demonstrated that these problems can be partially ameliorated by using
electron withdrawing substituents on the arene ligand (R=oxazolidine, hydrazones, etc.)2

and/or by using various additives in the reaction mixture that serve to drive the initial
equilibrium to the right (K+ instead of Li+ counterions, use of crown ethers or HMPA, etc.).3

Nonetheless, arene ligands with electron donating substituents, such as substituted (alkoxy-
arene)Cr(CO)3 complexes (e.g. 1–3, Eq. (1)) are generally compatible with only a much narrower
range of nucleophiles.
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(1)

Previously we have demonstrated that the anion of isobutyronitrile can be added to chiral
(alkoxyarene)Cr(CO)3 complexes 1 and 2 in good yields with moderate to excellent diastereose-
lectivity (Eq. (1), Table 1, entries 1 and 2).4,5 Although a remarkable example of efficient
1,5-asymmetric induction, the isobutyronitrile substituent is clearly of limited synthetic utility.
We now report that excellent stereocontrol can be achieved during unprecedented ester enolate
addition reactions.6

Our first attempts towards realizing this goal utilized the enolate of t-butyl acetate (Rathke’s
salt7) along with the TMS substituted Cr(arene) complex 3. Unfortunately, the lithium ester
enolate did not add to the Cr(arene) complex, even upon prolonged reaction times (4–18 h) up
to −40°C (e.g. Table 1, entry 3). It appears that the equilibrium in the initial nucleophile

Table 1
Results of nucleophile addition/electrophile addition/demetallation reactions with Cr(arene) complexes 1, 2, and 3

Temp. (°C) DiastereomerHMPA Yield (%)cEster/nitrilea MethodbCr(arene)Entry Time (h)
ratio (% de)complex (equiv.)

1 5:95 4:1 (60)Me2CHCN −78 21 A
A 6:63 24:1 (92)22 Me2CHCN −78 2

3 7:0t-BuOAc −60 183 A
4 11:1 (84)7:(86)A8−6019.6t-BuOAc3

7:(30)dA8−60 \50:1 (\99)6.5t-BuOAc35
7:60 (60)3 20–38:1t-BuOAc 12.5 −60 4 A6

(90–94)
3 t-BuOAc 19 −60 8 B 7:60 (60) 20:1 (90)7
3 CH3CN 25 −608 18 2.6:1 (47)B 8:79

20−6025Me2CHCN B39 \50:1 (\99)9:(66)e

1910 t-BuOAC 5:1 (66)10:(54)B16−601

a Five equiv. of ester/nitrile were used relative to 1 equiv. of Cr(arene) complex in all reactions.
b Method A: Final THF reaction concentration was 0.10 M. Method B: Final THF reaction concentration was 0.05

M.
c Yield in parentheses determined by 1H NMR analysis of the crude reaction mixture using pyridine as an internal

standard.
d Reaction only proceeded to about 50% completion as determined by 1H NMR analysis of the crude product.
e 1H NMR analysis of the crude product indicated that 10% of the starting complex 3 remained unreacted.
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addition reaction (3/4, R1=TMS, Eq. (1)) lies unfavorably towards the starting complex 3. In
an attempt to increase the reactivity of the ester enolate ion and thus drive this equilibrium
towards the desired product, a crown ether was employed (12-crown-4) as well as the use of a
K+ instead of a Li+ counterion (KHMDS instead of LDA). In every case the unreacted starting
Cr(arene) complex 3 was recovered quantitatively. We next examined the use of HMPA as an
additive; when 19.6 equiv. was employed and the reaction was warmed to −60°C (to maintain
homogeneity), the cyclohexadiene 7 was indeed produced (entry 4) in a promising 84% de.8–10 By
utilizing 6.5 equiv. of HMPA (entry 5), it was found that the reaction only proceeded to about
50% consumption of complex 3, but 7 (NMR yield 30%) was produced as a single diastereomer!
Eventually, it was found that an acceptable balance could be struck between reaction yield and
diastereoselectivity by employing 12.5 equiv. of HMPA (entry 6), whereupon 7 was afforded in
60% isolated yield with a remarkable 90–94% de! To our knowledge this is the first successful
example of the addition of an ester enolate across a Cr(arene) double bond to give a cyclohexadiene
product.11,12

Hydrolysis of 7 (TsOH·H2O, THF) proceeded with concomitant removal of the TMS group,
to afford enone 11 in quantitative yield (Eq. (2)). The absolute configuration of 11 was
established as S by comparison of its CD spectrum with the previously published CD spectrum
of the related enone 12 (negative n–p* Cotton effect at lmax 338 nm).13

(2)

The steric bulk of the nucleophile and the para substituent on the Cr(alkoxybenzene) complex
play a critical role in controlling the 1,5-asymmetric induction. Thus, reaction of the anion of
acetonitrile with complex 3 gave a modest 2.6:1 ratio of diastereomers 8 (Table 1, entry 8), while
essentially complete diastereoselectivity was obtained using the more bulky isobutyronitrile
anion (entry 9; it should be noted that this reaction does not proceed at all in the absence of
HMPA4). In addition, reaction of the enolate of t-butyl acetate with complex 1 (entry 10)
proceeded with much poorer stereoselectivity (reaction with 2 was capricious and is not reported
here). This data is consistent with the previous hypothesis put forth by our group,4 wherein a
larger para substituent forces the nucleophile to take an approach trajectory at the reaction
center that is closer to the influence of the chiral auxiliary.

It is clear that the electron accepting TMS group does indeed have an activating influence on
the addition reactions (Table 1, entries 6 and 10) due to its ability to stabilize the intermediate
anionic Cr(dienyl) species (4, R1=TMS). The reaction with complex 1 required longer times for
completion, and the yield of diene product was observably lower than with 3. Apart from some
demetallated and rearomatized arene byproducts (less than 10% by NMR), it is not clear at this
point what has happened to the mass balance in this reaction.

In conclusion, we have demonstrated that the ester enolate of t-butyl acetate can be efficiently
added across a p-bond of Cr(alkoxybenzene) complex 3 with a high degree of 1,5-asymmetric
induction. To our knowledge this is the first documented example of such an overall addition
reaction to a Cr(arene) complex and may considerably broaden the scope of the nucleophile
addition/electrophile addition/demetallation reaction sequence. Current studies are ongoing in
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our laboratory to determine the generality and range of this important extension of useful
synthetic methodology, the results of which will be reported in due course.
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